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Abstract. Covariance structure analytic techniques have become increasingly popular in recent years. During this
period, users of statistical software packages have become more and more sophisticated, and more and more
researchers are wanting to make sure they are using the "best" statistic, whether it be for small sample considerations
or for issues of nonnormality. At present, none of the confirmatory structure analytic programs include small sample
modifications such as the k-factor Bartlett multiplier or the Swain multiplier. They do however include modifications
to address distributional nonnormality. EQS offers the Satorra-Bentler scaled statistic; it does not yet offer the

N Satorra-Bentler adjusted statistic. AMOS on the other hand offers a bootstrap alternative, however, does not yet offer
CV either of the Satorra-Bentler modified statistics. This Monte Carlo study addresses whether resampling based

procedures provide improved Type I error control over the modified test statistics such as the k-factor Bartlett
modified, Swain modified, Satorra-Bentler scaled, Satorra-Bentler adjusted test statistics.
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Introduction

It has long been known that many covariance structure analytic techniques popular with an increasingly
large body of researchers in education, the behavioral and social sciences can have extremely poor small sample
performance characteristics (e.g., Anderson & Gerbing, 1984; Bearden, Sharma, & Teel, 1982; Boomsma, 1980). It
has also long been known that some of these covariance structure analytic techniques are sometimes inappropriate
for use under conditions of distributional nonnormality (e.g., Boomsma, 1980; Browne, 1982; Henly, 1993; Hu,
Bentler, & Kano, 1992).

Importantly however, as evidenced by regular inquiries on SEMNET, an electronic mail list server
dedicated to issues related to structural equation modeling, not all researchers have access to large samples, have
data which originate from multivariate normal populations, or have data from populations in which multivariate
normality is not a concern (c.f., Anderson & Amemiya, 1985; Browne, 1987; Browne & Shapiro, 1987; Fouladi,
1998, for conditions of asymptotic robustness of normal theory techniques). Fortunately for these researchers, over
the years a number of viable alternatives to standard structure analytic techniques have been proposed, some but not
all of which have been implemented in statistical software currently on the market.

The alternative covariance structure analysis procedures under consideration in the present paper include
multiplicative modifications and the application of computer intensive resampling methods to standard covariance
structure analysis techniques. Even though the results of Monte Carlo simulation studies showing that the problems
associated with the use of covariance structure analysis techniques under small sample size conditions and/or
distributional nonnormality can be greatly alleviated by the use of modified test statistics (Curran, West, & Finch,
1996; Fouladi, 1997a,b, 1998) and resampling based test statistics (Ichikawa & Konishi, 1995) are becoming
increasingly well known, until recently the relative performance of the modified procedures was largely
undocumented, and to date, the relative performance of modified and resampling based statistics remains
unexamined. This paper seeks to fill this void in the literature.
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Test Procedures Examined

Consider N independently identically distributed observation vectors obtained from a p-dimensional
multivariate population, with non-singular pxp population covariance matrix E . In order to test the hypothesis that a
given path, structural, and/or measurement model is an appropriate representation of the pattern of relations among
the variables in the population, a researcher can use a variety of structure analysis procedures, most of which are
formulated using asymptotic covariance distribution theory.

The goodness of fit test statistics used in covariance structure analysis are generally of the form or some
function of T = cnF where c is a constant scaling factor, n = N -1, N is the sample size, and F is the minimum
value of F(S, E ) , a scalar valued discrepancy function of the sample covariance matrix S from the population

covariance model matrix E . The standard parametric covariance structure analysis test statistics implemented in

popular software with which one can conduct confirmatory covariance structure analyses, all have c=1. Under fairly
general conditions, when the null hypothesis is true, the discrepancy function is appropriately chosen and the model

is identified, these goodness of fit test statistics are asymptotically chi-square distributed with g = 1 p(p + 1) q
2

degrees of freedom,' where p is the number of observed variables and q the number of free parameters in the model
(Bentler & Dijkstra, 1985; Browne, 1982, 1984; Satorra and Saris, 1985; Shapiro, 1983, 1986; Steiger, Shapiro, &
Browne, 1985).

The poor performance of the standard maximum likelihood statistic and other covariance structure analysis
test statistics with c=1, under small sample conditions and/or conditions of distributional nonnormality has been
widely documented for several decades (e.g., Boomsma, 1980; Henly, 1993). Over the years, in various attempts to
address the problems associated with covariance structure analysis under these conditions, a number of alternative

-procedures have been proposed. The alternative procedures include modified test statistics involving multiplicative
scalings of standard covariance structure analysis test statistic suggested by Swain (1975), Satorra and Bentler
(1988), and Fouladi (1997c). Other proposed solutions to alleviate problems with standard parametric covariance
structure analysis techniques include the application of computer-intensive resampling procedures (Beran &
Srivastava, 1985; Bollen & Stine, 1992).

Swain modified test statistic

Swain (1975) proposed the use of a modified maximum likelihood test statistic to obtain improved small
sample performance characteristics for the standard maximum likelihood chi-square test statistic. Even though
proposed more than two decades ago, described in a widely cited chapter by Browne (1982), resulting in improved
small sample performance under conditions of multivariate normality, and easily computed, the Swain modified
maximum likelihood test statistic is little known and little used (Fouladi, 1997a,b, 1998). According to Browne,
Swain proposed four multipliers which seemed to result in an improvement of the approximation to the chi-square
distribution by the standard normal theory covariance structure analysis maximum likelihood goodness of fit statistic
under conditions of multivariate normality. Browne provided the one general multiplying factor which appeared
slightly preferable to the others, but which only applies to models which are scale invariant. The Swain multiplicative

modification has c = 1- (t p
Y

- t )/ (12gn) , where p is the number of observed variables, y = -1) / 2 ,

q = p(p + 1) / 2 - g , g is the number of degrees of freedom in the model, n= N -1, and tx = x(2x 2 + 3x -1) .

Fouladi (1996, 1997a,b, 1998) showed that the empirical Type I error rate of the Swain modified maximum
likelihood procedure converged more quickly to the nominal level than the standard maximum likelihood
implemented in commonly used statistical software packages. Fouladi (1998) also showed that under certain small
departures from distributional multivariate normality, the Swain modified maximum likelihood procedure had
adequate Type I error control, however, under larger departures from distributional normality exhibited empirical
Type I error rates which sometimes (depending on the structure of the data) departed substantially from the nominal
level.

k-factor Bartlett multipliers

Bartlett (1950) proposed the usage of N p I 3- 2k / 3 -11 / 6 instead of N -1 as the multiplicative
scaling of the minimum value of the maximum likelihood discrepancy function when testing a k-factor model for p
observed variables under reduced sample size conditions, thereby suggesting a scaling of the standard maximum
likelihood chi-square statistic by c =1- (2p + 4k + 5) / (6n) . The modified maximum likelihood test statistic using
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this multiplier has been implemented in widely used software with exploratory factor analytic capabilities, though not
in software or modules used for confirmatory structure analysis.

Fouladi (1997c) argued that the use of the k-factor Bartlett multiplier could be applied under in
confirmatory structure analysis whether or not any latent variables are hypothesized in the model. Fouladi (1997a,b)
examined the performance of the 0-factor Bartlett modified maximum likelihood test statistic. Results showed
significantly improved Type I error control over the standard maximum likelihood test statistic under conditions of
reduced sample size for a variety of models.

As with the Swain modified maximum likelihood procedure, Fouladi (1996, 1997a,b) showed that the
empirical Type I error rate of the 0-factor Bartlett modified maximum likelihood procedure converged more quickly
to the nominal level than the standard maximum likelihood procedure. Fouladi (1998) also showed that under certain
small departures from distributional multivariate normality, 0-factor Bartlett modified had adequate Type I error
control, however, under larger departures from distributional normality exhibited empirical Type I error rates which
sometimes (depending on the structure of the data) departed substantially from the nominal level.

Satorra & Bentler modified test statistics

Satorra and Bentler (Satorra, 1989; Satorra & Bentler, 1988) presented two approaches to improve the
asymptotic statistical behavior of covariance structure analysis statistics. Their methods yield the Satorra-Bentler
scaled and adjusted test statistics and are referred to chi-square distributions g and d' degrees of freedom
respectively (c.f., Satorra & Bentler, 1988). Though the two approaches were designed primarily to address
departures from the reference distribution under conditions of multivariate nonnormality, they have also been shown
to be useful under conditions of multivariate normality.

Simulation studies in the nineties have presented clear evidence on the improved performance
characteristics of the Satorra-Bentler scaled maximum likelihood test statistic over the standard maximum likelihood
test statistic (e.g., Chou & Bentler, 1995; Curran, West, & Finch, 1996; Hu & Bentler, 1995; Hu, Bentler, & Kano,
1992). Not only has the Satorra- Bentler scaled statistic been shown to be useful under conditions of multivariate
nonnormality (Chou & Bentler, 1995; Curran, West, & Finch, 1996; Hu & Bentler, 1995; Hu, Bentler, & Kano,
1992), it has also been shown to be useful under conditions of multivariate normality and reduced sample sizes
(Curran, West, & Finch, 1996). However, until recently, the performance characteristics of the Satorra-Bentler
adjusted maximum likelihood test statistic was largely undocumented. Fouladi (1997a,b, 1998) examined the
performance of the Satorra-Bentler adjusted statistic and determined that, under reduced sample size conditions, not
only did it show improved performance over the standard maximum likelihood test statistic, it also showed improved
performance over the Satorra-Bentler scaled statistic both under conditions of multivariate normality and
nonnormality. Though, under large sample sizes the Satorra-Bentler scaled procedure was preferred.

Resampling based test statistics

There are a number of different implementations of resampling techniques (c.f., Yung & Bentler, 1992,
1996). Beran and Srivastava (1985) and Bollen and Stine (1992) considered the use of bootstrap-corrected
techniques in covariance structure analysis. The method described by Beran and Srivastava and Bollen and Stine
permits the establishment of an empirical reference distribution which can be used to test the null hypothesis that the
model is a good fit to the data. The Beran-Srivastava method involves the initial transformation of the data such that
the data conform to the null hypothesis. After transformation of the data, a large number of independent bootstrap
samples are generated by sampling with replacement, and the test statistic for each bootstrap sample is calculated.
The empirical distribution of the test statistic is recorded. This empirical distribution is then used as the reference
distribution to which the observed value from the original data set is compared. Because the null hypothesis of model
fit is rejected for large observed values, the bootstrap critical value is the (1 a )-percentile of the empirical
distribution. Rejection is obtained if the value of the test statistic based on the original sample exceeds the bootstrap
critical value.

Though recommended over a decade ago, the performance characteristics of resampling based model
testing procedures have not been widely documented in the context of covariance structure analysis. Results from a
recent simulation study on the application of bootstrap methods -in factor analysis by Ichikawa and Konishi (1995)
suggest that resampling based covariance structure analysis techniques perform well under conditions of
nonnormality and moderate to large sample sizes, however may not perform as well under small sample conditions.

Ichikawa and Konishi (1995) conducted a Monte Carlo experiment investigating the use of Beran-
Srivastava bootstrap methods in maximum likelihood factor analysis under conditions of multivariate normality and
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multivariate nonnormality; they found that tests of model fit based on Beran-Srivastava bootstrap methods performed
extremely well under conditions of distributional normality and nonnormality. However, given that their study
examined the performance of bootstrap based techniques for orthogonal models and data from elliptical
distributions, they suggest that the results of their study should be generalized with caution. They also note that since
bootstrap samples involve random sampling of data with replacement, some observations are included more than
once in a bootstrap sample, and can result in numerically ill conditioned sample covariance matrices, particularly
under small sample conditions. As such, the use of bootstrap based covariance structure analysis techniques may not
be advisable for extremely small sample sizes.

Empirical results on the relative performance of the alternative procedures

That Monte Carlo simulation results show that the problems associated with the use of covariance structure
analysis techniques under small sample size conditions and/or conditions of distributional nonnormality can be
greatly alleviated by the use of modified tests statistics and resampling based test statistics is becoming increasingly
well known. Less well-known is the relative performance of these alternative techniques, particularly the relative
performance of modified and resampling based techniques.

In the only studies to simultaneously examine the performance of the standard maximum likelihood test
statistic and the 0-factor Bartlett, Swain and both Satorra-Bentler modified maximum likelihood test statistics,
Fouladi (1997a,b, 1998) found that the application of the 0-factor Bartlett, Swain and Satorra-Bentler multipliers to
the standard maximum likelihood test statistic yielded significant improvements in Type I error control under
conditions of multivariate normality and nonnormality. Fouladi (1997a) found, under conditions of multivariate
normality and small sample sizes, the Satorra-Bentler scaled and adjusted test statistic performed better than the
standard maximum likelihood test statistic, however did not yield as good performance as a 0-factor Bartlett
modified or Swain modified maximum likelihood procedure. Under conditions of multivariate nonnormality, Fouladi
(1997b, 1998) found the Satorra-Bentler scaled and adjusted test statistic performed better than the standard, 0-factor
Bartlett modified, and Swain maximum likelihood test statistics under models in which the observed variables were
more than moderately nonnormally distributed and could not be said to be derived from a population with an
orthogonal latent variable structure, otherwise, the 0-factor Bartlett modified and Swain modified maximum
likelihood procedures were preferred.

The purpose of this study

To date no study has simultaneously examined the performance of modified covariance structure analysis
test statistics and the application of resampling methods to tests of covariance structure analysis recommended by
Beran and Srivastava (1985) and Bollen and Stine (1992). As such the relative performance of Beran-Srivastava
resampling methods in covariance structure analysis procedures and modified test statistics remains a question. This
paper aims to address this unknown using a Monte Carlo simulation project, and in so doing seeks to determine
which procedures yield improved -Type I error control under conditions of multivariate normality and under
conditions of multivariate nonnormality.

Methods

A series of Monte Carlo simulation experiments were conducted in order to compare the error rate control
of the standard, 0-factor Bartlett modified, Swain modified, Satorra-Bentler scaled and adjusted test statistics, and
the Beran-Srivastava bootstrap covariance structure analysis test procedure under conditions of multivariate
normality and nonnormality. The simulation experiment was conducted using a stand-alone FORTRAN computer
program implementing the procedures under study. Programming accuracy checks were conducted with Mathematica
(Wolfram, 1996), EQS (Bentler, 1995), and the SePath (Steiger, 1995).

For the examination of Type I error control, data sets were generated from 6-dimensioinal populations with
specified moments. The univariate moments of the 6 variables in each multivariate population were homogeneous. In
these populations, the means of the variables were all 0, and the variances were all 1. Nine univariate distribution
types of varying nonnormality were considered. The distributional characteristics of the variables included levels of
skew 71=0, 1, 2, and levels of kurtosis Y2= -1, 0, 1, 3, 6; however, not all possible combinations of skew and
kurtosis were examined. The possible combinations of skew and kurtosis are restricted according to the inequality:

yi2 <.62957672 +.717247 (Fleishman, 1978). Table 1 details the combinations of univariate skew and kurtosis

considered in the present paper.
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The underlying correlation structure of the variables was also varied. The correlational structure of the
variables was either diagonal (uncorrelated variables) or simplex (correlated variables). Figure 1 details the
characteristics of the models in the population using SEPATH path language; note that no latent variables were
described in the models.

In the present study, the Vale and Maurelli (1983) method was used to generate data from the specified p-
variate populations. This method is a p-variate extension of the Fleishman (1978) method for generating univariate
nonnormal data, and can be used to generate data from populations with specified marginal means, variances, skew,
and kurtoses and specified correlation structure.

Multivariate data sets were generated at various sample sizes, N : 2 q , 4 q , 10 q , 20 q , and 50 q , where

q = p(p +1) / 2 g . Sample covariance matrices were obtained for each of the data sets, and structural hypotheses

were tested at two levels of nominal alpha: allominal =.05 and .01. For each sample covariance matrix, the six
structure analysis procedures were conducted, the decisions for the tests were recorded at each of the nominal levels.
Resampling based decisions were based on 1000 bootstrap samples.

Experiments under each condition were replicated 5000 times.

Measures of performance
There are different methods of examining the performance of test procedures. When the test statistics have a

common reference distribution as is the case with some of the covariance structure analysis test statistics, one can
examine the convergence of the distribution of the test statistics in covariance structure analysis to the reference
distribution by examining the convergence of the moments of the sampling distribution of the test statistics to the
moments of the reference distribution. This method has become popular in recent years, however, in general the only
moment that is examined is the mean; little attention has been paid to higher moments. This method is less useful
when test statistics have different reference distributions, as is the case in the present paper. An alternative method of
examining the performance of test procedures that does not involve the complications of different reference
distributions is to examine the convergence of the empirical Type I error rates to the nominal level.

For each condition, the number of rejections obtained for each correlation pattern test are tabulated and
transformed into proportion rejected. Rejection rates are based on the number of replications for which convergence
obtained. Under each condition, the empirical rejection rate, aEmpirical , for each statistic is observed. For each

cell, the percent bias (B%) of the observed empirical rejection rate from the expected rejection rate, allominal is

obtained where B% = 100(aEmpirical allominal ) allominal Empirical performance of the procedures is

examined using guidelines set forth by Bradley (1978) and Robey and Barcikowski (1992) for what constitutes
acceptable departures from nominal alpha. Null-consistent chi-square goodness of fit values based on a normal
approximation to the binomial are also computed. Appropriate summing of the chi-square values can be used to
provide tests of the overall control of empirical rejection rates at the nominal level. Multivariate and univariate
analysis of variance designs are used to further analyze the percent bias results. In the first set of multivariate and
univariate analyses, only the intercept effects in the general linear models are tested, thereby providing tests of the
departure of the mean percent bias from 0. In the second set of multivariate and univariate analyses, a four-way
factorial design is used to determine the influence of Model type, Distribution type, Sample size, and Nominal alpha
on the percent bias.

Results

Table 2 details the empirical rejection rates of the 6 covariance structure analysis procedures examined in
this study.

Judgments of overall Type I error control using Bradley-Robey-Barcikowski criteria

Empirical rejection rates are examined using the Bradley, Robey, and Barcikowski (BRB) guidelines for
what constitutes acceptable levels of departure of empirical Type-I error rates from the nominal level. Bradley (1978)
asserted that many researchers are unreasonably generous when defining acceptable departures of empirical alpha
from the nominal level. He held that the departure of empirical alpha from the nominal level was "negligible" if
empirical alpha was within a ± io a according to a 'fairly stringent criterion', and a ±i-a according to the "most

liberal criterion that [he] was able to take seriously" which in the remainder of his article he referred to as the 'liberal
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criterion'. Robey and Barcikowski (1992) supplement the guidelines provided by Bradley for defining acceptable
departures from the nominal level, providing an 'intermediate criterion' of a±la, and a 'very liberal criterion' of

atia. This set of guidelines { at-ka, at+a, at+a, a±ia) for empirical rates are hereafter referred to

as the BRB criteria for empirical alpha.

Empirical rejection rates in Table 2 less than the lower limit of atia are indicated, as are empirical

rejection rates that exceed the upper limit of a±ia . Inspection of this table reveals that no procedure consistently

provides control of empirical rejection rates within the most liberal of the BRB guidelines for acceptable Type I
error control.

Table 3 provides an overview of the proportion of conditions in which the empirical rejection rate is within
each of the BRB criteria for empirical alpha, is less than the lower limit of atia, and is greater than the upper

limit of a±ia . The results in this table indicate that no procedure consistently controls empirical rejection rates

within the BRB criteria. The standard maximum likelihood procedure has empirical rejection rates that are within the
most liberal criterion for empirical alpha, a ± ia, in 39% of the conditions examined. In contrast, the other

procedures have empirical rejection rates that are within atia in over 50% of the conditions. Of particular note is

that the Satorra-Bentler adjusted maximum likelihood procedure, which shows the best of control of empirical alpha
within atia, demonstrates control in 83% of the conditions, followed by the Beran-Srivastava bootstrap
maximum likelihood procedure which provides control in 66% of the conditions. The Swain and the Satorra-Bentler
scaled maximum likelihood procedures provide control within atia in 59% and 52% of the conditions,
respectively. The magnitude of the percentages can be used to rank order the procedures from best to worst Type I
error control. Similar rankings can be obtained from the percentages within the more stringent BRB criteria for
empirical Type I error control. The results obtained from a ranking of the percentages within at-34-a and atla

suggest the same overall ordering of the procedures' control of Type I error from best to worst: Satorra-Bentler
adjusted, Beran-Srivastava Bootstrap, 0-factor Bartlett modified, Swain modified, Satorra-Bentler scaled, followed
by the standard maximum likelihood procedure. A different order is obtained from a ranking of the percentages
within a tla and at*a: 0-factor Bartlett modified, Swain modified, Beran-Srivastava bootstrap, Satorra-
Bentler adjusted, Satorra-Bentler scaled, followed by the standard maximum likelihood procedure.

Of further note, is that all the procedures with the exception of the Beran-Srivastava bootstrap maximum
likelihood procedures had empirical rejection rates in excess of the upper bound of atia a larger proportion of

the time than they had rejection rates that were less than the lower bound of atia, thereby showing a general
tendency of liberal bias over conservative bias for standard maximum likelihood and modified maximum likelihood
test procedures. By contrast, the bootstrap procedure showed a general tendency of conservative bias over liberal
bias.

Overall chi-square goodness of fit tests on empirical alpha

Null-consistent chi-square goodness of fit values based on a normal approximation to the binomial were
computed comparing the empirical rejection rates to nominal alpha. Appropriate summing of the chi-square values
was used to provide tests of the overall control of empirical rejection rates at the nominal level. The results showed
that none of the procedures provide overall control empirical rejection rates at the nominal level or at or below the
nominal level (p<.001). The magnitude of the chi-square values can be used to rank order the procedures from best
to worst Type I error control. These results suggested the overall the ranking of the procedures' control of Type I
error at the nominal level from best to worst is: Beran-Srivastava bootstrap, Satorra-Bentler adjusted, 0-factor
Bartlett modified, Swain modified, standard, followed by the Satorra-Bentler scaled maximum likelihood procedure.

Analysis of variance

A multivariate analysis of variance was conducted to test whether the mean percent bias of the 6 procedures
was within sampling error of 0. Results showed that overall there was a significant difference between the mean
percent bias of the procedures and 0 (p<.001). Univariate analyses were conducted for each of the procedures.
Results from the univariate analyses showed that, with the exception of the mean percent bias of the Satorra-Bentler
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adjusted maximum likelihood procedure (p=.114), the mean percent bias of all the other procedures was significantly
different from 0 (p<.001). Table 4 presents summary statistics on each of the procedures. These mean and standard
error of the mean results show that overall the standard, 0-factor Bartlett modified, Swain modified, and Satorra-
Bent ler scaled maximum likelihood procedures are liberal procedures, and the Beran-Srivastava Bootstrap maximum
likelihood procedure is conservative.

A factorial multivariate analysis of variance was conducted to determine the influence of Model type,
Distribution type, Sample size, and Nominal alpha on percent bias. With the exception of Model x Distribution type
x Nominal alpha (Pillai-Bartlett trace, p=.026) and Distribution type x Sample size x Nominal Alpha (Pillai-Bartlett
trace, p=.152), all multivariate tests of main effects, two-way and three-way interaction effects yielded p<.001; the
four way interaction effect was not tested as there was only one summary empirical rejection rate per cell. Univariate
factorial analyses were conducted for each test procedure; eta-squared values and p-levels associated with each effect
are summarized in Table 5, as are estimated R-squared values (SSErrect/SSrotai). These univariate results show that
even though many of the effects in the model are statistically significant, many of the effects account for less than ten
percent of the variability in the percent bias. The effects which account for more than ten percent of the variability in
the percent bias are: (a) Distribution type and Model x Distribution type for the standard maximum likelihood
procedure, (b) Model type, Distribution type, and Model x Distribution type for the 0-factor Bartlett and Swain
modified maximum likelihood procedures, (c) Sample size and Model x Sample size for the Satorra-Bentler scaled
and adjusted maximum likelihood procedures, (d) Model, Sample size, and Distribution type for the Beran-
Srivastava Bootstrap based maximum likelihood procedure.

Type 1 error control as a function of Model type, Sample size, and Distribution type

Tables 6 and 7 provide summary chi-square goodness of fit values for the control of Type I error rates at the
nominal level overall and as a function of model type, sample size, and distribution type. Comparison of the
magnitudes of the chi-square values permits a ranking of the procedures in terms of Type I error control across the
various conditions. Examination of the overall chi-square values suggests that even though none of the procedures
provided Type I error control in general the Beran-Srivastava bootstrap procedure had the best performance. Within
the uncorrelated variables model, the 0-factor Bartlett modified procedure outperformed all other procedures across
all the distribution types and at N:q of 2, 4, and 10, however at N:q of 20 and 50 the Beran-Srivastava bootstrap
procedure had the best Type I error control. Within the correlated variables model, the 0-factor Bartlett modified
procedure outperformed the other procedures for the (K,S) equal to (-1,0), (0,0), and (1,0), for the distributions with
increased leptokurtosis and/or skew alternative procedures were preferred. The Beran-Srivastaba bootstrap
procedure outperformed all other procedures at N:q of 2, 10, and 20. At N:q of 4 the Satorra-Bentler adjusted
procedure was preferred. At N:q of 50, the Satorra-Bentler scaled procedure was preferred.

Figures 2-3 depict the influence of Model type, Distribution type and Sample size on the empirical rejection
rates of the 6 procedures at the .05 nominal level. Figure 2 illustrates how for the uncorrelated variables model, the
empirical rejection rates of the procedures vary relatively little as a function of distribution type, and vary mainly as
a function of sample size. By contrast, Figure 3 illustrates how for the correlated variables model, the empirical
rejection rates of the standard, 0-factor modified, and Swain modified maximum likelihood procedures vary mainly
as a function of distribution type, whereas the Satorra-Bentler scaled and adjusted maximum likelihood procedures
and the Beran-Srivastava Bootstrap maximum likelihood procedure vary mainly as a function of sample size, and
relatively little as a function of distribution type.

Figure 4 illustrates the empirical rejection rates as a function of sample size under conditions of the
uncorrelated variables model and nominal alpha equal to .05. The minimal variability in the empirical rejection rates
for each procedure at each level of sample size highlights that distribution type is not a major factor under conditions
of the uncorrelated variables model. This figure also illustrates the rapid convergence of empirical rejection rates to
the nominal level for the 0-factor Bartlett and Swain modified maximum likelihood procedures. At all levels of
sample size, the 0-factor Bartlett modified maximum likelihood procedure has the best Type I error control of all the
procedures, followed by the Swain modified maximum likelihood procedure. The Beran-Srivastava bootstrap and
Satorra-Bentler adjusted procedures showed better Type I error control than the standard maximum likelihood
procedure, but not as good as the 0-factor Bartlett modified or the Swain modified procedures.

Figure 5 illustrates the empirical rejection rates as a function of sample size under conditions of the
correlated variables model and nominal alpha equal to .05. The differential variability in the empirical rejection rates
for some of the procedures at each level of sample size highlights that distribution type is a major factor under
conditions of the correlated variables model for the standard, 0-factor Bartlett modified, and Swain modified

8
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maximum likelihood procedures. This figure also illustrates the rapid convergence of empirical rejection rates to the
nominal level for the Satorra-Bentler adjusted and Beran-Srivastava bootstrap procedure. At the lowest level of
sample sizes, these procedures outperformed all the other procedures including the Satorra-Bentler scaled procedure
in Type I error control.

Figure 6 illustrates the empirical rejection rates as a function of distribution type under conditions of the
correlated variables model and nominal alpha equal to .05. The differential variability in the empirical rejection rates
for some of the procedures at each level of distribution type highlights that distribution type can be a major factor
under conditions of the correlated variables model, particularly for the standard, 0-factor, and Swain modified
procedures. Importantly, for the first three distribution types, the 0-factor Bartlett and the Swain modified maximum
likelihood procedures outperformed all other procedures in Type I error control. Even the standard maximum
likelihood procedure performed well under these conditions for moderate to large sample sizes. However for the
other distribution types, depending on the level of sample size, the preferred procedures were the Satorra-Bentler
scaled and adjusted maximum likelihood procedures or the Beran-Srivastava bootstrap maximum likelihood
procedure..

Discussion

Researchers in education, the behavioral and social science are making increasingly frequent use of
covariance structure analytic techniques to answer questions of substantive interest. Fortunately, researchers are
more and more aware of some of the problems that can be asssociated with covariance structure analysis under small
sample conditions and/or under conditions of nonnormality.

A wide variety of procedures have been proposed to address some of the problems encountered by
researchers engaging in research using small data sets or data sets which can not be described as originating from
multivariate normal populations. A number of simulation results have evidenced the improved performance of some
of these alternative procedures over the standard maximum likelihood test statistic.

Recent simulation results (Fouladi, 1998) evidenced that the covariance structure analysis procedures with
the best small sample Type I error control under conditions of extremely mild distributional nonnormality include the
0-factor Bartlett modification or the Swain modification to standard maximum likelihood covariance structure
analysis test statistic. The current study provides evidence on the relative performance of the Beran-Strivastave
bootstrap procedure and demonstrates that the Beran-Srivastava bootstrap procedure does not provide as good
control of Type I error under conditions of extremely mild distributional nonnormality as the 0-factor Bartlett or
Swain modified maximum likelihood procedure, however does show improved Type I error control over the standard
maximum likelihood procedure.

The procedures with the best Type I error control under more general nonnormal distributional conditions
depends largely on the structure of the underlying variables. Fouladi (1998) showed that if the observed variables
can be described as originating from populations in which latent variables are orthogonal (as in the case of the
uncorrelated variables model), then the 0-factor Bartlett and Swain modified maximum likelihood procedures are
preferred; however, if the observed variables can not be described as originating from populations in which latent
variables are orthogonal (as in the case of the correlated variables model). The alternative structure analytic
procedures with some of the best Type I error control under more general nonnormal distributional conditions have
been shown to be the Satorra-Bentler adjusted and scaled procedures, with the Satorra-Bentler adjusted procedure
providing the best control under conditions of reduced sample size (Fouladi, 1998). The current study provides
evidence on the relative performance of the Beran-Srivastava bootstrap procedure, and shows that it does not
outperform the 0-factor Bartlett modified or the Swain modified procedures under conditions of mild nonnormality
or Satorra-Bentler adjusted procedure under more general conditions of nonnormality. It does however outperform
the Satorra-Bentler scaled procedure by showing more rapid convergence of empirical Type I error to the nominal
level. Though clearly the Satorra- Bentler scaled procedure outperforms all the procedures under conditions of
multivariate nonnormality when sample size is large.

Importantly, however, the choice should not just depend on the performance characteristics of the test
procedure, the choice should ultimately be guided by a joint examination of the performance characteristics of the
procedures and whether the researcher is in an accept-support or reject-support research situation (Fouladi, 1998;
Steiger & Fouladi, 1997; Tanaka, 1987). When researchers using structure analysis are in an accept-support position,
that is, researchers are wanting to confirm that the hypothesized model is a good reflection of the population
structure, the use of a conservative procedure to fail' to reject the null hypothesis that our structure model is a good

9
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reflection of the population structure is inappropriate. Given the Beran-Srivastava procedure is by-and-large the most
conservative of the available procedures under conditions of multivariate normality and nonnormality, if the
researcher fails to reject the null hypothesis there may be cause for concern, however if the researcher actually
manages to reject the null hypothesis with the Beran-Srivastava bootstrap procedure, then the researcher can be
satisfied that this has not been done under conditions of elevated Type I error.

By contrast, researchers using structure analysis to refute a model are in a reject-support position, that is,
the researchers are wanting to disconfirm that a hypothesized model is a good reflection of the population structure.
Under these circumstances, the use of a liberal procedure to obtain a rejection the null hypothesis that the structure
model of interest is a good reflection of the population structure is inappropriate. Thus if a researcher rejects the null
hypothesis using any of the liberally biased maximum likelihood based procedures there may be cause for concern,
however, if the researcher actually fails to reject the null hypothesis then the researcher can be satisfied that this has
more than likely been done under conditions of elevated Type I error.

Final note

At present, none of the structure analytic programs commonly used to conduct confirmatory covariance
structure analyses include modifications such as the k-factor Bartlett multiplier or the Swain multiplier; this is not of
major concern, however, since the modified test statistics resultant from the application of these multipliers are easily
obtained. EQS does offer the Satorra-Bentler scaled statistic; however, it does not yet offer the Satorra-Bentler
adjusted statistic or the Beran-Srivastava bootstrap procedure. AMOS on the other hand does offers the Beran-
Srivastava (Bollen-Stine) bootstrap, however, does not yet offer either of the Satorra-Bentler modified statistics.
Even though the other programs do not automatically implement the Beran-Srivastava bootstrap procedure, those
programs which enable standard bootstrapping of non-transformed data can be used to obtain proper tests of model
fit with some effort.
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Tables and Figures

Table 1: Possible combinations of univariate kurtosis and skew

Kurtosis Skew
0 1 2

-1 Distribution 1
0 Distribution 2
1 Distribution 3 Distribution 4
3 Distribution 5 Distribution 6
6 Distribution 7 Distribution 8 Distribution 9
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Table 2: Empirical rejection rates as a function of Model type (uncorrelated variables= 1, correlated variables=2), sample size
(N) , Distribution type as specified by the marginal kurtoses (Kul and skew (Sk), and Nominal alpha.

Model N Ku
Alpha=.05 Alpha=.01

Sk ML Bart Swain Scl Adj Boot ML Bart Swain Scl Adj Boot

1 2q -1 0 .2514+ .0730 .0838 .5426+ .2118+ .0000- .1008+ .0186+ .0246+ .3208+ .0420+ .0000-
0 0 .2624+ .0708 .0856 .5294+ .2204+ .0000- .1088+ .0150 .0206+ .3308+ .0420+ .0000-
1 0 .2556+ .0708 .0890+ .5382+ .2064+ .0000- .1056+ .0182+ .0264+ .3296+ .0352+ .0000-
1 1 .2510+ .0672 .0814 .5410+ .1976+ .0000- .1024+ .0140 .0208+ .3214+ .0350+ .0000-
3 0 .2562+ .0730 .0860 .5448+ .1916+ .0000- .1042+ .0192+ .0244+ .3218+ .0322+ .0000-
3 1 .2520+ .0686 .0840 .5234+ .1818+ .0000- .1032+ .0176+ .0240+ .3152+ .0308+ .0000-
6 0 .2644+ .0784 .0936+ .5580+ .1782+ .0000- .1132+ .0182+ .0234+ .3236+ .0288+ .0000-
6 1 .2564+ .0740 .0896+ .5378+ .1620+ .0000- .1090+ .0190+ .0232+ .3110+ .0238+ .0000-
6 2 .2652+ .0870 .1016+ .5434+ .1744+ .0000- .1216+ .0242+ .0308+ .3182+ .0284+ .0000 -

4q -1 0 .1106+ .0490 .0558 .2094+ .0716 .0064- .0272+ .0096 .0100 .0754+ .0062 .0000 -
0 0 .1074+ .0530 .0570 .1978+ .0666 .0102- .0332+ .0120 .0128 .0704+ .0086 .0012-
1 0 .1094+ .0558 .0620 .1998+ .0612 .0074- .0322+ .0100 .0120 .0712+ .0070 .0000 -
1 1 .1054+ .0500 .0540 .2064+ .0626 .0074- .0284+ .0102 .0114 .0700+ .0068 .0002-
3 0 .1082+ .0516 .0574 .1980+ .0502 .0078- .0296+ .0124 .0134 .0674+ .0036 .0002-
3 1 .1202+ .0590 .0648 .2084+ .0572 .0078- .0340+ .0128 .0142 .0720+ .0052 .0002-
6 0 .1224+ .0610 .0650 .1972+ .0434 .0082- .0376+ .0158 .0172 .0660+ .0024- .0000-
6 1 .1196+ .0580 .0632 .1944+ .0444 .0092- .0376+ .0164 .0184+ .0638+ .0038 .0002-
6 2 .1212+ .0664 .0704 .1914+ .0392 .0072- .0430+ .0200+ .0222+ .0588+ .0040 .0002 -

10q -1 0 .0702 .0500 .0514 .0952+ .0468 .0388 .0166 .0112 .0124 .0248+ .0072 .0068
0 0 .0628 .0450 .0458 .0928+ .0434 .0374 .0142 .0084 .0090 .0226+ .0058 .0046
1 0 .0696 .0456 .0482 .0914+ .0372 .0346 .0134 .0088 .0094 .0194+ .0036 .0046
1 1 .0662 .0502 .0504 .0880+ .0420 .0380 .0170 .0114 .0122 .0242+ .0058 .0068
3 0 .0720 .0528 .0554 .0844 .0362 .0390 .0182+ .0116 .0126 .0218+ .0030 .0046
3 1 .0758 .0540 .0554 .0898+ .0360 .0382 .0156 .0108 .0118 .0224+ .0030 .0042
6 0 .0772 .0598 .0608 .0884+ .0308 .0398 .0218+ .0152 .0158 .0260+ .0030 .0070
6 1 .0694 .0548 .0560 .0820 .0250 .0282 .0202+ .0146 .0150 .0170 .0030 .0032
6 2 .0772 .0606 .0618 .0844 .0266 .0310 .0236+ .0166 .0166 .0190+ .0024- .0038

20q -1 0 .0568 .0492 .0504 .0674 .0460 .0464 .0130 .0106 .0110 .0160 .0086 .0100
0 0 .0576 .0498 .0504 .0736 .0486 .0488 .0140 .0116 .0118 .0154 .0078 .0088
1 0 .0608 .0518 .0534 .0694 .0448 .0504 .0144 .0118 .0120 .0154 .0066 .0102
1 1 .0532 .0454 .0466 .0614 .0358 .0412 .0112 .0092 .0094 .0124 .0042 .0074
3 0 .0666 .0568 .0576 .0700 .0360 .0486 .0156 .0124 .0126 .0156 .0044 .0092
3 1 .0568 .0488 .0498 .0630 .0328 .0440 .0086 .0078 .0080 .0110 .0036 .0072
6 0 .0590 .0508 .0514 .0648 .0308 .0466 .0156 .0130 .0134 .0130 .0028 .0060
6 1 .0706 .0608 .0618 .0714 .0322 .0482 .0164 .0136 .0138 .0142 .0032 .0084
6 2 .0662 .0586 .0596 .0680 .0276 .0416 .0186+ .0156 .0158 .0124 .0032 .0058

50q -1 0 .0584 .0564 .0568 .0622 .0536 .0490 .0118 .0108 .0108 .0134 .0090 .0136
0 0 .0518 .0468 .0472 .0556 .0456 .0436 .0114 .0106 .0106 .0114 .0074 .0100
1 0 .0546 .0520 .0528 .0574 .0480 .0480 .0124 .0114 .0114 .0122 .0074 .0124
1 1 .0540 .0500 .0502 .0560 .0446 .0508 .0106 .0100 .0100 .0110 .0070 .0100
3 0 .0564 .0502 .0508 .0608 .0408 .0502 .0104 .0098 .0098 .0098 .0054 .0102
3 1 .0526 .0500 .0500 .0556 .0406 .0482 .0112 .0100 .0100 .0110 .0052 .0106
6 0 .0574 .0540 .0542 .0534 .0354 .0490 .0144 .0130 .0130 .0100 .0050 .0114
6 1 .0582 .0540 .0544 .0572 .0384 .0482- .0154 .0146 .0148 .0124 .0054 .0126
6 2 .0578 .0556 .0558 .0562 .0318 .0464 .0126 .0112 .0116 .0106 .0036 .0104
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Modified and Bootstrap based statistics 13

Table 2 - continued: Empirical rejection rates as a function of Model type (uncorrelated variables= 1, correlated variables=2),
sample size (N) , Distribution type as specified by the marginal kurtoses (Ku) and skew (Sk), and Nominal alpha.

Model N Ku
Alpha=.05 Alpha=.01

Sk ML Bart Swain Scl Adj Boot ML Bart Swain Scl Adj Boot

1 2q -1 0 .1140+ .0598 .0612 .2061+ .1086+ .0120- .0364+ .0140 .0144 .0814+ .0224+ .0012-
0 0 .1191+ .0594 .0606 .2121+ .1099+ .0128- .0334+ .0120 .0124 .0841+ .0220+ .0004 -
1 0 .1178+ .0618 .0620 .2056+ .1014+ .0112- .0342+ .0154 .0156 .0768+ .0188+ .0000-
1 1 .2263+ .1320+ .1330+ .2155+ .0911+ .0108- .0829+ .0373+ .0381+ .0801+ .0146 .0006-
3 0 .1441+ .0817 .0825 .2012+ .0903+ .0116- .0496+ .0238+ .0244+ .0741+ .0164 .0002-
3 1 .2132+ .1303+ .1307+ .2294+ .0883+ .0120- .0795+ .0338+ .0342+ .0803+ .0144 .0006-
6 0 .2330+ .1489+ .1514+ .2563+ .0955+ .0124- .0981+ .0491+ .0499+ .0959+ .0160 .0004-
6 1 .2474+ .1590+ .1598+ .2440+ .0858 .0120- .1117+ .0596+ .0608+ .0866+ .0132 .0014
6 2 .4871+ .3706+ .3730+ .2797+ .0853 .0140 .2881+ .1855+ .1877+ .0998+ .0095 .0004

4q -1 0 .0800 .0558 .0558 .1136+ .0702 .0372 .0200+ .0120 .0122+ .0328+ .0114 .0060
0 0 .0704 .0482 .0486 .1040+ .0580 .0302 .0144 .0080 .0082 .0288+ .0088 .0046
1 0 .0754 .0548 .0552 .1064+ .0562 .0316 .0186+ .0118 .0122 .0264+ .0068 .0050
1 1 .1840+ .1406+ .1412+ .1174+ .0524 .0362 .0616+ .0412+ .0414+ .0306+ .0062 .0060
3 0 .1286+ .0946+ .0950+ .1146+ .0542 .0378 .0410+ .0302+ .0306+ .0314+ .0056 .0070
3 1 .1770+ .1390+ .1404+ .1194+ .0488 .0448 .0698+ .0498+ .0500+ .0314+ .0074 .0084
6 0 .2246+ .1840+. .1848+ .1234+ .0458 .0470 .1014+ .0716+ .0720+ .0342+ .0044 .0078
6 1 .2428+ .2022+ .2028+ .1222+ .0414 .0434 .1096+ .0854+ .0858+ .0302+ .0036 .0078
6 2 .4769+ .4251+ .4263+ .1332+ .0426 .0474 .2815+ .2314+ .2326+ .0362+ .0030 .0056

10q -1 0 .0578 .0496 .0496 .0690 .0536 .0508 .0128 .0108 .0108 .0162 .0090 .0102
0 0 .0582 .0518 .0518 .0696 .0554 .0508 .0134 .0110 .0114 .0160 .0078 .0110
1 0 .0682 .0602 .0604 .0684 .0498 .0548 .0154 .0124 .0124 .0162 .0088 .0112
1 1 .1616+ .1438+ .1440+ .0736 .0494 .0612 .0536+ .0462+ .0462+ .0168 .0062 .0116
3 0 .1192+ .1076+ .1080+ .0692 .0408 .0566 .0354+ .0304+ .0304+ .0144 .0054 .0104
3 1 .1760+ .1602+ .1608+ .0712 .0394 .0574 .0622+ .0536+ .0536+ .0136 .0042 .0120
6 0 .2412+ .2228+ .2232+ .0716 .0302 .0670 .1084+ .0974+ .0978+ .0162 .0034 .0146
6 1 .2680+ .2492+ .2492+ .0678 .0260 .0664 .1244+ .1132+ .1132+ .0118 .0028 .0120
6 2 .4704+ .4504+ .4514+ .0764 .0304 .0662 .2692+ .2484+ .2490+ .0170 .0034 .0130

20q -1 0 .0574 .0542 .0542 .0624 .0556 .0530 .0124 .0110 .0110 .0124 .0102 .0118
0 0 .0552 .0510 .0514 .0608 .0530 .0530 .0120 .0102 .0102 .0126 .0100 .01.26
1 0 .0636 .0594 .0596 .0590 .0490 .0516 .0142 .0132 .0132 .0132 .0088 .0120
1 1 .1466+ .1398+ .1400+ .0596 .0470 .0540 .0492+ .0466+ .0466+ .0124 .0066 .0112
3 0 .1212+ .1144+ .1148+ .0558 .0342 .0510 .0334+ .0314+ .0316+ .0134 .0054 .0120
3 1 .1836+ .1744+ .1744+ .0578 .0354 .0556 .0656+ .0624+ .0624+ .0116 .0052 .0106
6 0 .2570+ .2478+ .2478+ .0628 .0314 .0678 .1206+ .1148+ .1148+ .0106 .0034 .0174
6 1 .2892+ .2784+ .2786+ .0568 .0272 .0600 .1384+ .1324+ .1324+ .0106 .0030 .0118
6 2 .4772+ .4662+ .4664+ .0608 .0326 .0604 .2766+ .2682+ .2682+ .0104 .0030 .0138

50q -1 0 .0494 .0486 .0486 .0530 .0520 .0580 .0102 .0096 .0096 .0104 .0088 .0178+
0 0 .0548 .0534 .0534 .0554 .0528 .0588 .0120 .0118 .0118 .0124 .0108 .0218+
1 0 .0606 .0602 .0602 .0542 .0506 .0582 .0144 .0140 .0140 .0116 .0084 .0200+
1 1 .1440+ .1418+ .1418+ .0528+ .0474 .0626 .0470+ .0458+ .0458+ .0088+ .0074 .0216+
3 0 .1228+ .1192+ .1192+ .0492+ .0400 .0586 .0344+ .0332+ .0332+ .0102+ .0072 .0180+
3 1 .1814+ .1778+ .1778+ .0562+ .0432 .0652- .0736+ .0712+ .0712+ .0100+ .0068 .0226+
6 0 .2750+ .2724+ .2726+ .0512+ .0324 .0640 .1254+ .1216+ .1216+ .0086+ .0032 .0216+
6 1 .3280+ .3242+ .3242+ .0538+ .0338 .0726 .1596+ .1572+ .1572+ .0112+ .0054 .0224+
6 2 .4950+ .4904+ .4906+ .0488+ .0374 .0632 .2948+ .2898+ .2898+ .0094+ .0048 .0176+
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Table 6: Summary chi-square goodness of fit tests overall and as function of Model type (uncorrelated variables=1, correlated
variables=2) and Sample size (N).

Model N df ML Bart Swain Scl Adj Boot

1 2q 18 84199.00 a 900.29 a 2381.16 a 668269.13 a 21882.61 a 2822.97 a
4q 18 6543.99 a 158.35 a 298.90 a 37004.46 a 250.75 a 2108.93 a
10q 18 772.22 a 83.24 a 101.99 a 2099.38 a 403.18 a 315.24 a
20q 18 252.84 a 63.51 a 73.01 a 392.31 a 338.38 a 49.39 a
50q 18 70.39 a 29.96 c 33.02 c 68.21 a 174.77 a 21.20

Subtotal 90 91838.44 a 1235.35 a 2888.08 a 707833.49 a 23049.70 a 5317.73 a

2 2q 18 91209.86 a 32974.99 a 33774.34 a 55968.64 a 2259.40 a 1766.70 a
4q 18 80941.55 a 52100.25 a 52627.13 a 6439.12 a 160.38 a 202.98 a
10q 18 79107.29 a 66537.91 a 66840.63 a 557.13 a 276.38 a 134.37 a
20q 18 86195.56 a 79853.36 a 79894.58 a 113.01 a 277.43 a 109.10 a
50q 18 99669.53 a 96253.08 a 96280.99 a 19.57 156.92 a 670.33 a

Subtotal 90 437123.78 a 327719.58 a 329417.67 a 63097.46 a 3130.50 a 2883.48 a

Grand Total 180 528962.22 a 328954.93 a 332305.76 a 770930.95 a 26180.20 a 8201.21 a
Note: a=p<.001, b=p<.01, c=p<.05

Table 7: Summary chi-square goodness of fit tests overall and as function of Model type (uncorrelated variables=1, correlated
variables=2) and Distribution type.

Model Ku Sk df ML Bart Swain Scl Adj Boot

1 -1 0 10 9053.05 a 98.84 a 240.28 a 79560.77 a 3338.87 a 590.66 a
0 0 10 10339.14 a 67.62 a 204.29 a 80660.73 a 3625.20 a 556.14 a
1 0 10 9759.24 a 89.20 a 318.70 a 81217.64 a 2963.77 a 598.25 a
1 1 10 9114.84 a 42.79 a 169.23 a 79019.42 a 2692.25 a 585.16 a
3 0 10 9641.98 a 111.53 a 268.82 a 79106.73 a 2481.05 a 577.64 a
3 1 10 9585.00 a 82.68 a 259.37 a 75483.25 a 2182.29 a 589.54 a
6 0 10 11342.18 a 183.20 a 382.37 a 81011.80 a 2105.89 a 573.98 a
6 1 10 10508.27 a 173.27 a 359.09 a 74660.06 a 1611.41 a 616.16 a
6 2 10 12494.74 a 386.24 a 685.93 a 77113.08 a 2048.97 a 630.19 a
Subtotal 90 91838.44 a 1235.35 a 2888.08 a 707833.49 a 23049.70 a 5317.73 a

2 -1 0 10 947.76 a 26.82 b 32.05 a 5907.73 a 489.53 a 256.57 a
0 0 10 855.44 a 17.61 21.10 6101.08 a 465.61 a 331.62 a
1 0 10 984.74 a 80.84 a 84.51 a 5346.15 a 329.33 a 320.26 a
1 1 10 14843.06 a 7086.25 a 7151.50 a 6154.37 a 214.99 a 336.08 a
3 0 10 5359.99 a 2620.69 a 2661.31 a 5207.66 a 274.14 a 270.83 a
3 1 10 19093.44 a 11464.37 a 11529.32 a 6686.29 a 240.65 a 316.53 a
6 0 10 46354.80 a 33769.48 a 33961.01 a 9156.62 a 431.56 a 389.46 a
6 1 10 63648.38 a 49271.54 a 49410.70 a 7724.51 a 373.39 a 370.30 a
6 2 10 285036.17 a 223381.99 a 224566.17 a 10813.06 a 311.30 a 291.82 a
Subtotal 90 437123.78 a 327719.58 a 329417.67 a 63097.46 a 3130.50 a 2883.48 a

Grand Total 180 528962.22 a 328954.93 a 332305.76 a 770930.95 a 26180.20 a 8201.21 a
Note: a=p<.001, b=p<.01, c=p<.05
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Figure 1: Population covariance matrices and models.

Uncorrelated variables population and model.

Population covariance matrix.

1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0. 0 0 0 0 1_

Model tested, q=6..

[VAR1 ]-{0.0}-[VAR2]
-{0.0}-[VAR3]
-{0.0}-[VAR4]
-{0.0}-[VAR5]
-{0.0}-[VAR6]

[VAR2]- {0.0}-[VAR3]
-{0.0}-[VAR4]
-{0.0}- [VAR5]
-{0.0}-[VAR6]

[VAR3]- {0.0}-[VAR4]
-{0.0}-[VAR5]
-{0.0}-[VAR6]

[VAR4]- {0.0}-[VAR5]
-{0.0}- [VAR6]

[VAR5]- {0.0}-[VAR6]

[VAR1]- 1 -[VAR1]
[VAR2]- 2 -[VAR2]
[VAR3]- 3 -[VAR3]
[VAR4]- 4 -[VAR4]
[VAR5]- 5 -[VAR5]
[VAR6]- 6 -[VAR6]
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Correlated variables population and model.

Population covariance matrix.

1 .7 .6 .5 .4 .3
.7 1 .7 .6 .5 .4
.6 .7 1 .7 .6 .5
.5 .6 .7 1 .7 .6
.4 .5 .6 .7 1 .7
.3 .4 .5 .6 .7 1

Model tested, q=11.

[VA R 1 ]-1 -[VA R2]
-2-[VAR3]
-3-[VAR4]
-4- [VAR5]
-5-[VAR6]

[VA R2]-1 -[VA R3]
-2-[VAR4]
-3-[VAR5]
-4-[VAR6]

[VA R3]-1 -[VA R4]
-2-[VAR5]
-3-[VAR6]

[VA R4]- 1 -[VA R5]
-2-[VAR6]

[VA R5]- 1 -[VA R6]

[VAR* 6 -[VAR1]
[VAR2]- 7 -[VAR2]
[VAR3]- 8 -[VAR3]
[VAR4]- 9 -[VAR4]
[VAR5]- 10 -[VAR5]
[VAR6]- 11 -[VAR6]
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